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Abstract

In this study\ the transient full _eld response of an interface crack between two di}erent media subjected
to dynamic body force at one material is investigated[ For time t³ 9\ the bimaterial medium is stress free
and at rest[ At t�9\ a concentrated anti!plane dynamic point loading is applied at the medium as shown in
Fig[ 0[ The total wave _eld is due to the e}ect of this point loading and the scattering of the incident waves
by the interface crack[ An alternative methodology that is di}erent from the conventional superposition
method is used to construct the re~ected\ refracted and di}racted wave _elds[ A useful fundamental solution
is proposed in this study and the full _eld solution is determined by superposition of the fundamental
solution in the Laplace transform domain[ The proposed fundamental problem is the problem of applying
an exponentially distributed traction "in the Laplace transform domain# on the interfacial crack faces[ The
CagniardÐde Hoop method of Laplace inversion is used to obtain the transient solution in time domain[
Exact transient closed form solutions for stresses and stress intensity factors are obtained[ Numerical results
for the time history of stresses and stress intensity factors during the transient process are discussed in detail[
Þ 0887 Elsevier Science Ltd[ All rights reserved

0[ Introduction

The interaction of a stress wave with a crack in an unbounded medium is a complicated problem[
The analytical study of this problem is restricted to relatively simple cases for homogeneous
material[ Many structures are composed of di}erent materials formed in layers for both man!made
and natural origin[ The layers are bonded together along interfaces[ For the last two decades\ the
importance of composite materials has increased very rapidly in engineering applications because
of their high strength and light weight[ However\ ~aws contained at the interfaces of composite
bodies due to improper adhesion may lead to serious danger\ and a better understanding of
interface fracture mechanics is needed[ Since the inherent time dependence of a dynamic fracture
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process results in mathematical models that are more complex than equivalent quasi!static models\
most of the analyses done regarding cracked composite bodies are quasi!static[ However\ because
of increasing applications of multilayered materials in modern engineering structures\ there is still
substantial interest in the dynamic interface fracture problem and many e}orts should be added
in this _eld in recent years[

The asymptotic elastic _elds of a semi!in_nite crack lying along an interface between dissimilar
isotropic materials subjected to static loading was _rst considered by Williams "0848# for plane
strain condition[ A number of solutions for the stress and the displacement _eld near the crack tip
are obtained by England "0854#\ Erdogan "0854# and Rice and Sih "0854#[ Extensions to anisotropic
elasticity for the near tip _eld have been made by Gotoh "0856#\ Bogy "0861#\ and Kuo and Bogy
"0863#\ and recently by Ting "0875\ 0889#\ Qu and Bassani "0878#[ The exact full _eld solutions of
interface cracks in anisotropic dissimilar media is obtained by Ma and Luo "0885#[

The extension of an interface crack under the in~uence of transient horizontally polarized shear
wave was analyzed by Brock and Achenbach "0862#[ It is assumed that the adhesive behaves as a
perfectly plastic material\ so that the stress in the zone of interface yielding is uniform and equal
to the yield stress[ Analytic solutions for the time of rupture and for the interface stress ahead of
yield zone are obtained by applying integral transform methods[ In conventional studies of a semi!
in_nite crack in an unbounded homogeneous medium subjected to a spatially uniform traction
distribution acting on crack faces\ the complete solution is obtained by integral transform methods
together with a direct application of the WienerÐHopf technique and the CagniardÐde Hoop
method of Laplace inversion[ The evolution of the WienerÐHopf technique and a number of
extensions are described by Noble "0847#[ The application of the technique to transient problems
in elastodynamics was pioneered by de Hoop "0847# in a study of several di}raction problems[ If
the loading is replaced by a nonuniform distribution having a characteristic length\ then the
straightforward application of the WienerÐHopf method is not successful[ Freund "0863b# studied
the problem of an elastic homogeneous solid containing a half!plane crack subjected to a pair of
concentrated loadings on the crack faces at a _nite distance from the crack tip[ The exact solution
of this problem was obtained by an indirect approach based on the superposition of moving
dislocation[ Basing his procedure on this method\ Brock "0871\ 0873#\ Brock et al[ "0874# and Ma
and Hou "0889\ 0880# analyzed a series of problems of a semi!in_nite crack in a homogeneous
medium subjected to impact loading[ In a series of papers\ Freund "0861a\ b\ 0862\ 0863a#
developed important analytical methods for evaluating the transient _eld of a propagating crack[
In Freund|s papers\ the di.cult problem was separated into a number of more basic problems[ By
building up the so!called fundamental solutions of these basic!problems\ the complete problem
can then be obtained by superposition of the fundamental solution for the negation of the stress
distribution on the prospective fracture plane[ Based on the superposition method proposed by
Freund\ a series of problems for nonplanar crack propagation in a homogeneous medium was
solved by Ma and Burgers "0875\ 0876\ 0877# and Ma "0877\ 0889#[ For the aforementioned
problems\ either the direct application of the well!known WienerÐHopf technique "Noble\ 0847#
is used or the superposition method proposed by Freund is performed to solve the problem[
However\ if a crack is subjected to incident non!planar waves\ none of the known methods can be
used directly to obtain the transient solutions[

In this study\ the two!dimensional problem of a concentrated antiplane body force imposed
suddenly near a semi!in_nite crack is investigated in detail[ At time t � 9\ an anti!plane con!
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centrated dynamic loadings is applied at the interface medium as shown in Fig[ 0[ This problem
can be treated as the superposition of two problems[ The _rst problem is the disturbance by a
concentrated force in the crack!free\ unbounded medium[ The second problem considers the
interface crack surfaces subjected to the negatives of the tractions induced by the _rst problem[
To solve this problem\ a new fundamental solution is proposed in this study and the complete
solution is determined by superposition of the fundamental solution in the Laplace transform
domain[ The fundamental problem is the problem of applying an exponentially distributed traction
on the interface crack faces in the Laplace transform domain[ This alternative superposition
scheme has also been used to solve many transient problems for the interaction of incident
cylindrical waves with cracks in homogeneous medium successfully\ e[g[\ Tsai and Ma "0881# for
a stationary crack and Ma and Ing "0884# for a propagating crack[ The transient full!_eld solutions
of the interface crack and the dynamic stress intensity factor are obtained and are expressed in a
closed form[ Numerical results of stresses and dynamic stress intensity factors for the problem
considered are evaluated and discussed in detail[ The investigation of the idealized semi!in_nite
interface crack in this study can provide some information for an actual elastodynamic fracture
problem[ It should be noted that while the analysis has been carried out by assuming semi!in_nite
cracks\ the results remain valid for a _nite interface crack up until the time at which waves
di}racted from the far tip reach the material point[

1[ The fundamental problem and fundamental solutions

In this section\ an alternative fundamental problem is proposed and the fundamental solution
is obtained by using the WienerÐHopf technique[ The advantage is that the fundamental solution
is easy to obtain and the complete solution is easy to construct by superposition of the fundamental
solution[ Consider a fundamental problem of anti!plane deformation for an interface crack in
dissimilar materials subjected to dynamic loadings[ Figure 0 shows the interface crack geometry
and the coordinate systems[ Materials 0 and 1 occupy the lower and upper half!spaces\ respectively[
The governing equations of wave motions in two media are

11w"i#

1x1
¦

11w"i#

1y1
� b1

i

11w"i#

1t1
\ i � 0\ 1 "0#

Fig[ 0[ The con_guration and coordinate system of an interface crack in a bimaterial medium[
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where the superscript i "i � 0\ 1# refers to the lower and upper media\ respectively^ w"i# are the out!
of!plane displacements\ and bi are the slownesses of the shear waves given by

bi �
0
ci

�X
ri

mi

\

in which ci are the shear wave speeds\ mi and ri are the respective shear moduli and the mass
densities of two materials[ The nonvanishing shear stresses are

s"i#
yz � mi

1w"i#

1y
\ s"i#

xz � mi

1w"i#

1x
[ "1#

The solution for an exponentially distributed loading applied at crack faces in the Laplace
transform domain will be referred to as the fundamental solution[ Then boundary conditions on
crack surfaces expressed in the Laplace transform domain can be described as follows

s¹ "0#
yz "x\ 9\ p# � s¹ "1#

yz "x\ 9\ p# � ephx\ −� ³ x ³ 9\ "2#

where p is the Laplace transform parameter and h is a constant[ The overbar symbol is used for
denoting the transform on time t[ The one!sided Laplace transform with respect to time and the
two!sided Laplace transform with respect to x are de_ned by

w¹ "x\ y\ p# � g
�

9

w"x\ y\ t# e−pt dt\

w½ "l\ y\ p# � g
�

9

w¹ "x\ y\ p# e−plx dx[

The displacements and shear stresses must be continuous on the interface which gives the following
conditions on the interface

s¹ "0#
yz "x\ 9\ p# � s¹ "1#

yz "x\ 9\ p# 9 ³ x ³ �\ "3#

w¹ "0# "x\ 9\ p# � w¹ "1# "x\ 9\ p# 9 ³ x ³ �[ "4#

The solution of the proposed fundamental problem can be obtained by using integral transform
methods[ Apply a one!sided Laplace transform with respect to t and a two!sided Laplace transform
with respect to x on "0#[ General solutions in the transform domain\ which are bounded as y :
−� "and ¦�\ respectively#\ can be expressed as

w½ "0# "l\ y\ p# � A0"p\ l# epa0"l#y\ "5#

w½ "1# "l\ y\ p# � A1"p\ l# e−pa1"l#y\ "6#

where

ai"l# � zbi¦lzbi−l � a¦
i "l#a−

i "l#\ i � 0\ 1 "7#

and A0\ A1 are unknown functions[ The branch cuts of ai are introduced to ensure Re"ai# − 9 in
the entire cut complex l!plane\ where {{Re|| denotes the real part[
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Application of the Laplace transforms to the boundary conditions "2#Ð"4# yields

s¹ "0#
yz "l\ 9\ p# � s¹ "1#

yz "l\ 9\ p# �
0

p"h−l#
¦s¹¦

yz \ −� ³ x ³ � "8#

w½ "0# "l\ 9\ p# � w½ "1# "l\ 9\ p# � A¦\ 9 ³ x ³ � "09#

where s½¦
yz and A¦ are unknown functions[

From eqns "5# and "6#\ the transformed displacements and shear stresses along the interface
crack line y � 9 are

w½ "0# "l\ 9\ p# � A0 � A¦¦A−
0 \ "00#

w½ "1# "l\ 9\ p# � A1 � A¦¦A−
1 \ "01#

m0pa0"l#A0 � −m1pa1"l#A1 �
0

p"h−l#
¦s½¦

yz[ "02#

In eqns "00# and "01#\ A−
0 and A−

1 are unknown functions analytic in Re"l# ³ bi\ respectively[
Eliminating A¦ through "00#Ð"02#\ we have

A− �
m0a0"l#¦m1a1"l#
pm0m1a0"l#a1"l# $

0
p"h−l#

¦s½¦
yz%\ "03#

where A− � A−
0 −A−

1 is the transformed crack!opening displacement[

Case 0] b0 × b1

At this point it is convenient to introduce a new function S1"l# by de_ning

S1"l# �
m0a0"l#¦m1a1"l#

"m0¦m1#a0"l#
[ "04#

The function S1"l# has the properties that S1"l# : 0 as =l= : �\ and that S1"l# has neither zeros
nor poles in the l!plane by cuts along b1 ³ l ³ b0 and −b0 ³ l ³ −b1[ From the general product
factorization method\ S1"l# can be written as the product of two regular functions S¦

1 "l# and
S−

1 "l#\ where

S2
1 "l# � exp 6−

0
p g

b0

b1

tan−0 $
m1"d1

1−b1
1#0:1

m0"b1
0−d1#0:1%

0
d2l

dd7[ "05#

In view of the previous discussion\ eqn "03# may be rewritten as

pzb1−l
A−

S−
1 "l#

−
m0¦m1

pm0m1"h−l#
S¦

1 "h#

zb1¦h

�
"m0¦m1#

zb1¦l

S¦
1 "l#

m0m1

s½¦
yz¦

m0¦m1

pm0m1"h−l# $
S¦

1 "l#

zb1¦l
−

S¦
1 "h#

zb1¦h%[ "06#

The left!hand side of this equation is regular for Re"l# ³ b1\ while the right!hand side is regular
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for Re"l# × −b1[ Applying the analytic continuation argument\ therefore\ each side of eqn "06#
represents one and the same entire function\ say E"l#[ By Liouville|s theorem\ the bounded entire
function E"l# is a constant[ The magnitude of the constant can be obtained from order conditions
on E"l# as =l= : �\ which in turn are obtained from order conditions on the dependent _eld
variables in the vicinity of x � 9[ Furthermore\ w¹ "0#

− "x\ 9\ p#−w¹ "1#
− "x\ 9\ p# is expected to vanish as

x : 9− to ensure continuity of displacement\ and s¹¦
yz "x\ 9\ p# is expected to be square root singular

as x : 9¦[ Consequently from the Abel theorem\ E"l# vanishes completely and then from eqn
"06#\ we _nd

A− 0 A−
0 −A−

1 �
"m0¦m1#S¦

1 "h#S−
1 "l#

p1m0m1zb1−lzb1¦h

0
h−l

[ "07#

Making use of eqns "00#Ð"02# and eliminating s½¦
yz \ we obtain

A¦ � −0
m0a0A

−
0

m0a0¦m1a1

¦
m1a1A

−
1

m0a0¦m1a11[ "08#

Substituting A−
1 from "07# into "08#\ A0 can be found as

A0 �
S¦

1 "h#zb1¦l

p1S¦
1 "l#m0a0zb1¦h"h−l#

[ "19#

Similarly substituting A−
0 from "07# into "08#\ we have

A1 �
−S¦

1 "h#

p1S¦
1 "l#m1zb1¦hzb1−l"h−l#

[ "10#

In view of eqns "19#\ "10#\ "5# and "6#\ inverting the two!sided Laplace transform\ we obtain the
fundamental solutions of stresses and displacements for the fundamental problem in the Laplace
transform domain as follows

s¹ "0#
yz "x\ y\ p# �

0
1pi g

S¦
1 "h#zb1¦l

S¦
1 "l#zb1¦h"h−l#

epða0"l#y¦lxŁ dl\ "11#

s¹ "0#
xz "x\ y\ p# �

0
1pi g

S¦
1 "h#zb1¦ll

S¦
1 "l#a0"l#zb1¦h"h−l#

epða0"l#y¦lxŁ dl\ "12#

w¹ "0# "x\ y\ p# �
0

1pi g
S¦

1 "h#zb1¦l

m0pS¦
1 "l#a0"l#zb1¦h"h−l#

epða0"l#y¦lxŁ dl\ "13#

s¹ "1#
yz "x\ y\ p# �

0
1pi g

S¦
1 "h#zb1¦l

S¦
1 "l#zb1¦h"h−l#

e−pða1"l#y−lxŁ dl\ "14#

s¹ "1#
xz "x\ y\ p# �

0
1pi g

−S¦
1 "h#l

S¦
1 "l#zb1¦hzb1−l"h−l#

e−pða1"l#y−lxŁ dl\ "15#
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w¹ "1# "x\ y\ p# �
0

1pi g
−S¦

1 "h#

m1pS¦
1 "l#zb1¦hzb1−l"h−l#

e−pða1"l#y−lxŁ dl[ "16#

The corresponding result of the dynamic stress intensity factor expressed in the Laplace transform
domain is

KÞIII "p\ h# � lim
x:9

z1pxs¹ yz"x\ 9\ p#

�
−"1:p#0:1S¦

1 "h#

"b1¦h#0:1 g
�

9

e−pt

t0:1
dt �

z1S¦
1 "h#

"b1¦h#0:1p0:1
[ "17#

Case 1] b0 ³ b1

Following the similar procedure as presented previously for case 0 "b0 × b1#\ we have

A0 �
S¦

0 "h#

p1S¦
0 "l#m0zb0¦hzb0−l"h−l#

\ "18#

A1 �
−S¦

0 "h#zb0¦l

p1S¦
0 "l#m1a1zb0¦h"h−l#

\ "29#

where

S2
0 "l# � exp 6−

0
p g

b1

b0

tan−0 $
m0"d1−b1

0#0:1

m1"b1
1−d1#0:1%

0
d2l

dd7[ "20#

The solutions of stresses and displacements for the fundamental problem in the Laplace trans!
form domain are

s¹ "0#
yz "x\ y\ p# �

0
1pi g

S¦
0 "h#zb0¦l

S¦
0 "l#zb0¦h"h−l#

epða0"l#y¦lxŁ dl\ "21#

s¹ "0#
xz "x\ y\ p# �

0
1pi g

lS¦
0 "h#

S¦
0 "l#zb0¦hzb0−l"h−l#

epða0"l#y¦lxŁ dl\ "22#

w¹ "0# "x\ y\ p# �
0

1pi g
S¦

0 "h#

m0pS¦
0 "l#zb0¦hzb0−l"h−l#

epða0"l#y¦lxŁ dl\ "23#

s¹ "1#
yz "x\ y\ p# �

0
1pi g

S¦
0 "h#zb0¦l

S¦
0 "l#zb0¦h"h−l#

e−pða1"l#y−lxŁ dl\ "24#

s¹ "1#
xz "x\ y\ p# �

0
1pi g

−lS¦
0 "h#zb0¦l

S¦
0 "l#a1"l#zb0¦h"h−l#

e−pða1"l#y−lxŁ dl\ "25#
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w¹ "1# "x\ y\ p# �
0

1pi g
−S¦

0 "h#zb0¦l

m1pS¦
0 "l#a1"l#zb0¦h"h−l#

e−pða1"l#y−lxŁ dl[ "26#

The corresponding result of the stress intensity factor is

KÞIII "p\ h# �
−z1S¦

0 "h#

"b0¦h#0:1p0:1
[ "27#

2[ Transient full _eld solution in time domain

As shown in Fig[ 0\ a bimaterial medium is composed of two homogeneous\ isotropic\ and
linearly elastic solids[ Materials 0 and 1 occupy the lower and upper half!planes\ respectively[ A
semi!in_nite crack lying along the interface of the bimaterial is initially stress!free and at rest[ At
time t � 9\ a concentrated anti!plane dynamic loading with magnitude s9 is applied at the lower
half!plane x � −l and y � −h in material 0[ The two!dimensional geometry of the problem is
shown in Fig[ 0[ The time dependence of the concentrated loading is represented by the Heaviside
step function H"t#[ Dynamic stress intensity factor will be induced as the incident cylindrical wave
generated from the point loading arrives at the crack tip[ After the incident cylindrical wave
interaction with the semi!in_nite crack and the interface\ di}racted and re~ected waves will be
generated from the crack tip\ and refracted waves will be induced from the interface[

The incident _eld of the cylindrical wave generated by the concentrated loading expressed in the
Laplace transform domain can be represented as follows

s¹ i
yz"x\ y\ s# �

0
1pi g−s9 e−pða0"y¦h#−h"x¦l#Ł dh[ "28#

The applied traction on the crack faces as indicated in "28#\ has the functional form ephx[ Since
the solutions of applying traction ephx on crack faces have been solved in the previous section\ the
scattering _eld generated from the semi!in_nite crack can be constructed by superimposing the
incident wave traction that is equal to "28#[ When we combine "11#\ "14# and "28#\ the stress _elds
syz for lower and upper planes expressed in the Laplace transform domain can be obtained as
follows

Case 0] b0 × b1

s¹ "0#
yz �

s9

1pi gGh
6−e−pða0"y¦h#−h"x¦l#Ł¦r0:1"h# epða0"y−h#¦h"x¦l#Ł

¦
f0:1"h#
1pi gGl

S¦
1 "h#zb1¦l epða0"l#y¦lxŁ

S¦
1 "l#zb1¦h"h−l#

dl = e−pa0"h#h¦phl7 dh\ "39#
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s¹ "1#
yz �

s9

1pi gGh
6−f0:1"h# epða1y−a0h¦h"x¦l#Ł

¦
f0:1"h#
1pi gGl

S¦
1 "h#zb1¦l e−pða1"l#y−lxŁ

S¦
1 "l#zb1¦h"h−l#

dl = e−pa0"h#h¦phl7 dh[ "30#

Case 1] b0 ³ b1

s¹ "0#
yz �

s9

1pi gGh
6−e−pða0"y¦h#−h"x¦l#Ł¦r0:1"h# epða0"y−h#¦h"x¦l#Ł

¦
f0:1"h#
1pi gGl

S¦
0 "h#zb0¦l epða0"l#y¦lxŁ

S¦
0 "l#zb0¦h"h−l#

dl = e−pa0"h#h¦phl7 dh\ "31#

s¹ "1#
yz �

s9

1pi gGh
6−f0:1"h# epða1y−a0h¦h"x¦l#Ł

¦
f0:1"h#
1pi gGl

S¦
0 "h#zb0¦l e−pða1"l#y−lxŁ

S¦
0 "l#zb0¦h"h−l#

dl = e−pa0"h#h¦phl7 dh\ "32#

where

r0:1"h# �
m0a0"h#−m1a1"h#
m0a0"h#¦m1a1"h#

\

f0:1"h# �
1m1a1"h#

m0a0"h#¦m1a1"h#
[

The _rst two terms in "39# ðand "31#Ł represent the solution of incident and re~ected waves in
material 0 for applying a dynamic point loading in a bimaterial medium without crack\ and the
_rst term in "30# ðand "32#Ł represents the refracted wave in material 1[ The last term in "39#Ð"32#
represents the waves generated due to the disturbance of the interface crack[

Equations "39#Ð"32# constitute a double inversion integral where the paths Gl and Gh refer to
Laplace inversion contours in the l!plane and the h!plane\ respectively[ Here we shall carry out
the inverse transform using an extension of the CagniardÐde Hoop technique[ This technique
enables two successive inversions to be performed in one step[ In this particular problem\ we use
the technique proposed by Harris "0879# to perform three successive inversions[ This technique
was also used successfully by Tsai and Ma "0881# to solve the in!plane problem of a semi!in_nite
crack in a homogeneous medium subjected to dynamic concentrated forces[ We introduce Cagniard
contours in both the h and l!plane for material 0 by setting

a0"h#h−hl � tp\ "33#

−a0"l#y−lx � td0
[ "34#

Equations "33# and "34# can be solved for h and l to yield
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h2 �
−tp cos up

Rp

2i
sin up

Rp

"t1p−b1
0R

1
p #0:1\ "35#

l2 �
−tdp

cos ud0

Rd0

2i
sin ud0

Rd0

"t1d0
−b1

0R
1
d0
#0:1\ "36#

where

Rp �"l1¦h1#0:1\ up � cos−0 0
l

Rp1^ Rd0
�"x1¦y1#0:1\ ud0

� cos−0 0
x

Rd01
in which "Rp\ up# and "Rd0

\ ud0
# are the polar coordinates of the source point and the _eld point in

material 0\ respectively[ For material 1\ we set the Cagniard contour in the l!plane

a1"l#y−lx � td1
[ "37#

Solve for l to yield

l2 �
−td1

cos ud1

Rd1

2i
sin ud1

Rd1

"t1d1
−b1

1R
1
d1
#0:1\ "38#

where

Rd1
�"x1¦y1#0:1\ ud1

� cos−0 0
x

Rd11[
In the h!plane "or l!plane#\ "35# ðor "36#\ "38#Ł describes a hyperbola which is denoted as the

Cagniard contour[ We shift the h and l!integrations onto Cagniard contours along which tp\ td0

and td1
are both real and positive[ In this technique\ the two Cagniard contours must be super!

imposed in order to determine how and when they overlap for di}erent locations of source and
_eld points[ Depending on this\ the re~ected\ refracted and di}racted waves can be constructed
automatically[

The last term in "39#Ð"32# has a functional form possesses a pole at h � l\ the contribution of
the pole has to be taken into account in the change of integral paths from h to tp and l to td0

[
Consider the deformed integral contour shown in Fig[ 1a\ the requirement of Re"h# × Re"l#
dictates that the integral path Gh is always located at the right!hand side of Gl[ Recall that a pole
term arises\ representing the re~ected waves generated from the crack face[ For case 0 "b0 × b1#
and at material 0\ two material points are chosen to explain the generation of a re~ected wave
which represent the contour integral path "0# and "1# in Fig[ 1a[ After the change of the Gh and Gl

integrations onto Cagniard contours\ a pole at h � l will be embraced for path "1# but no pole
should be taken into account for path "0#[ Some important situations and generation of wave
fronts are expressed in Tables 0 and 1 for case 0 "b0 × b1# and case 1 "b0 ³ b1#\ respectively[ The
corresponding contour integrals for case 0 and case 1 are represented in Fig[ 1aÐf and Fig[ 2aÐd\
respectively[ Complete wave fronts for some interesting cases are shown in Figs 3Ð8[ The waves
shown in Figs 3Ð8 are composed of incident wave\ re~ected wave\ refracted wave\ di}racted wave
and head wave and are denoted by I\ R\ F\ D and H "or h#\ respectively[

Some interesting phenomena of the head wave and refracted wave can be explained by the
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Fig[ 1[ "a# Deformed integral contour for conditions "0#\ "1# and "2# of case 0[ "b# Deformed integral contour for
conditions "3#\ "4#\ "6# and "03# of case 0[ "c# Deformed integral contour for conditions "5# and "7# of case 0[
"d# Deformed integral contour for conditions "8# and "09# of case 0[ "e# Deformed integral contour for conditions "00#

and "01# of case 0[ "f# Deformed integral contour for condition "02# and of case 0[
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Table 0
Wave fronts generated in material 0 and material 1 for di}erent conditions of case 0

Case 0 Conditions Waves

Material 0 "0# p−cos−0 0
b1

b01× up × ud0
× cos−0 0

b1

b01 I\ Rr\ D0

"1# ud0
× p−cos−0 0

b1

b01× up × cos−0 0
b1

b01 I\ Rr¦f\ D0

"2# p−cos−0 0
b1

b01× up × cos−0 0
b1

b01× ud0
I\ Rr\ D0\ h0

D\ H

"3# up × p−cos−0 0
b1

b01× ud0
× cos−0 0

b1

b01 I\ Rr\ D0\ D0
h \ H

"4# up × p−cos−0 0
b1

b01\ cos−0 0
b1

b01× ud0
I\ Rr\ D0\ h0

D\ D0
h \ h0

D\ H

"5# cos−0 0
b1

b01× ud0
× up I\ Rr¦f\ D0\ h0

D

"6# ud0
× up × p−cos−0 0

b1

b01 I\ Rr¦f\ D0\ D0
h

"7# cos−0 0
b1

b01× up × ud0
I\ Rr\ D0\ h0

D\ Hdelay

"03# up × ud0
× p−cos−0 0

b1

b01 I\ Rr\ D0\ D0
h \ Hc

delay

Material 1 "8# p−cos−0 0
b1

b01× up × cos−0 0
b1

b01\ ud1
× up D1

"09# cos−0 0
b1

b01× up × ud1
D1\ Fdelay

"00# up × p−cos−0 0
b1

b01× ud1
D1\ D1

h

"01# ud1
× up × p−cos−0 0

b1

b01 D1\ D1
h \ Ftrans\ F

"02# up × ud1
× cos−0 0

b1

b01\ p−cos−0 0
b1

b01× ud1
D1\ F

deformed integral contours as shown in Fig[ 1b\ d and e[ Consider the deformed contour path "03#
as shown in Fig[ 1b\ the most important phenomenon is the distortion of the straight head wave
and the curved wave front is shown in Fig[ 6 as Hdelay[ The threshold is determined from the
intersection of G¦

h and G¦
l \ indicating that the straight wave front of the head wave will be deformed

and terminated at the wave front of D0 wave[ Next consider the deformed contour path "09# as
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Table 1
Wave fronts generated in material 0 and material 1 for di}erent conditions of case 1

Case 1 Conditions Waves

Material 0 "0# up × ud0
I\ Rr\ D0

"1# ud0
× up I\ Rr¦f\ D0

Material 1 "2# up × ud1
× cos−0 0

b0

b11\
p

1
× up D1\ F

"3# ud1
×

p

1
× up D1

"4# up × ud1
\ cos−0 0

b0

b11× ud1
D1\ h1

D\ F

"5# cos−0 0
b0

b11× ud1
× up D1\ F\ Ftrans

"6# up × ud1
× p−cos−0 0

b0

b11 D1\ Fdelay

shown in Fig[ 1d\ two Cagniard contours overlap and this overlap would cause the refracted F
wave to distort which becomes Fdelay wave as shown in Fig[ 3[ Finally\ consider the deformed
contour path "01# as shown in Fig[ 1e\ the overlap of these two Cagniard contours occurs and the
integration path represented by the dashed line will terminate at the intersection point of these two
contours[ This indicates that the refracted F wave is not complete and only exists before the
extended Ftran wave from the crack tip arrive[

The solutions of di}racted and head waves can be constructed by using the CagniardÐde Hoop
technique[ Finally the complete solutions of incident wave\ re~ected wave\ refracted wave and
di}racted wave expressed in time domain for shear stress syz are shown in the Appendix[

The corresponding dynamic stress intensity factors in time domain can be obtained as follows]

Case 0] b0 × b1

"0# up × p−cos−0"b1:b0#

KIII "t# �X
1

p2 g
t

b0Rp

Im $
f0:1"h#S¦

1 "h#

"b1¦h#0:1

1h

1t%
0

"t−t#0:1
dt\ "49#

"1# up ³ p−cos−0"b1:b0#

KIII "t# �X
1

p2 g
t

Thp

Im $
f0:1"h#S¦

1 "h#

"b1¦h#0:1

1h

1t%
0

"t−t#0:1
dt[ "40#
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Fig[ 2[ "a# Deformed integral contour for conditions "0# and "1# of case 1[ "b# Deformed integral contour for conditions
"2#\ "3# and "4# of case 1[ "c# Deformed integral contour for condition "5# of case 1[ "d# Deformed integral contour for
condition "6# of case 1[

Case 1] b0 ³ b1

KIII "t# �X
1

p2 g
t

b0Rp

Im $
f0:1"h#S¦

0 "h#

"b0¦h#0:1

1h

1t%
0

"t−t#0:1
dt[ "41#

For the special case of homogeneous medium\ i[e[ b0 � b1 and m0 � m1\ the solution of stress
intensity factor can be reduced to that obtained by Ma and Chen "0882# as follows
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Fig[ 3[ Wave fronts of the incident\ re~ected\ refracted and di}racted waves with loading applied at up � 34> and
c1:c0 � 1 for case 0[

Fig[ 4[ Wave fronts of the incident\ re~ected\ refracted and di}racted waves with loading applied at up � 64> and
c1:c0 � z2 for case 0[
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Fig[ 5[ Wave fronts of the incident\ re~ected\ refracted and di}racted waves with loading applied at up � 094> and
c1:c0 � z2 for case 0[

Fig[ 6[ Wave fronts of the incident\ re~ected\ refracted and di}racted waves with loading applied at up � 049> and
c1:c0 � z2 for case 0[
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Fig[ 7[ Wave fronts of the incident\ re~ected\ refracted and di}racted waves with loading applied at up � 59> and
c1:c0 � 0:z2 for case 1[

Fig[ 8[ Wave fronts of the incident\ re~ected\ refracted and di}racted waves with loading applied at up � 019> and
c1:c0 � 0:z2 for case 1[
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K9
III �X

1

p2 g
t

b0Rp

Im $
1h:1t

"b1¦h#0:1%
0

"t−t#0:1
dt

�X
1

pRp

cos 0
up

1 1H"t−bR#[ "42#

The interesting result represented in "42# is that the dynamic stress intensity factor for a semi!
in_nite crack on a homogeneous medium jumps from zero to the static value after the incident
shear wave generated from the loading point arrives at the crack tip[ The corresponding static
value for a semi!in_nite interfacial crack subjected to a static body force is

Ks
III �

1m1

m0¦m1

K9
III �

1m1

m0¦m1X
1

pRp

cos 0
up

1 1[ "43#

3[ Numerical results

The explicit analytical transient results for the stress syz and the stress intensity factor have been
given in the previous section[ The transient response of stress for an applied concentrated force
with Heaviside function dependence at the position r � Rp and u � up � 34> is investigated _rst[
The transient stress is evaluated at two _eld points A and B as shown in Fig[ 0\ in which A "
Rd0

� 9[3h\ ud0
� 19># is in material 0 and B "Rd1

� 9[3h\ ud1
� 19># is in material 1[ Figure 09

Fig[ 09[ Transient stress syz at _eld points A and B subjected to concentrated force applied at up � 34> and c1:c0 � 1[
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Fig[ 00[ Transient stress syz at _eld points A and B subjected to concentrated force applied at up � 34> and c1:c0 � 9[4[

shows the transient response of stress for the case of g � m1:m0 � 0 and c1:c0 � 1\ the corresponding
complete wave fronts are shown in Fig[ 3[ The time has been normalized by dividing by b0Rp and
the arrival time for each wave front is indicated in the _gure[ Figure 00 shows the transient response
of stress for the case of g � 0 and c1:c0 � 9[4\ the complete wave fronts are similar to Fig[ 7[ It is
worthy to indicate that after the last wave has passed the _eld point\ the value of transient stresses
will tend toward the corresponding static result[

The dynamic stress intensity factors for di}erent situations are shown in Figs 01Ð04[ The dynamic
stress intensity factor has been normalized by the corresponding result of the homogeneous case
K9

III[ Figure 01 shows an interesting result that the dynamic stress intensity factor will jump to the
corresponding static value for the special case of c0 � c1[ For the case of m0 � m1\ the dynamic
stress intensity factors for di}erent ratio of c1:c0 are presented in Fig[ 02[ It shows in Fig[ 02 that
the dynamic stress intensity factor will decrease and approach to a constant value for c0 × c1\ but
increase and approach to a constant value for c0 ³ c1[ The transient history of the dynamic stress
intensity factor for applying a point loading at di}erent location for m1:m0 � 0[4 and c1:c0 � 0[1 is
shown in Fig[ 03[ Figure 04 shows the result for the case of m1:m0 � 9[64 and c1:c0 � 9[8[ It is of
interest to see that the dynamic stress intensity factor will be larger than the homogeneous case in
the transient period for m1 × m0 and c1 × c0 "Fig[ 03#\ and will be smaller than the homogeneous
case for m1 ³ m0 and c1 ³ c0 "Fig[ 04#[

4[ Conclusions

Most of the problems that have been studied in the development of fracture mechanics are
quasi!static[ Numerous problems have existed for which the assumption that the deformation is
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Fig[ 01[ Dynamic stress intensity factors for c1:c0 � 0\ up � 34> and di}erent values of m1:m0[

Fig[ 02[ Dynamic stress intensity factors for m1:m0 � 0\ up � 34> and di}erent values of c1:c0[
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Fig[ 03[ Dynamic stress intensity factors for m1:m0 � 0[4\ c1:c0 � 0[1 and di}erent values of up[

Fig[ 04[ Dynamic stress intensity factors for m1:m0 � 9[64\ c1:c0 � 9[8 and di}erent values of up[



C[!C[ Ma\ K[!C[ Huan` : International Journal of Solids and Structures 25 "0888# 174Ð298295

quasi!static is invalid and the inertia of the material must be taken into account[ The mechanical
behavior of many newly developed multiphase materials are mainly controlled by the response of
the interface[ Many researchers have devoted to investigating the _eld of dynamic debonding along
a bimaterial interface[ The transient problem of a semi!in_nite interface crack in an in_nite
bimaterial is considered in this study[ The equivalent static problem has been studied by many
investigators in the past twenty years\ but the transient solution is very few[ In conventional studies
of a semi!in_nite crack in a homogeneous unbounded medium subjected to dynamic loading\ the
complete solution can be obtained by applying direct integral transform methods[ If a dynamic
cracked problem having a characteristic length or the loading condition is unsymmetric\ then the
same procedure cannot be applied directly[ In this paper\ the transient full _eld solutions and
dynamic stress intensity factor of a semi!in_nite interface crack in an in_nite bimaterial subjected
to a concentrated loading applied on the bimaterial medium is obtained[ The present results have
been justi_ed by the corresponding static value and homogeneous case[ These transient solutions
are obtained by superposition of a proposed fundamental solution in the Laplace transform
domain[ The proposed fundamental solution is an exponentially distributed traction applied on
the crack faces[ This fundamental solution is successfully applied towards solving this transient
problem and is demonstrated as an e.cient methodology to solve other similar problems[ The
exact solution of this con_guration can provide a valuable check for pure numerical methods such
as _nite element\ _nite di}erence or boundary element method in solving more complex geometries[

Some interesting and important results are obtained in this study[ We found that the dynamic
stress intensity factor will be larger than homogeneous case if the loading is applied at the softer
material[ However if the loading is applied at the harder material of the bimaterial medium\
then the dynamic stress intensity factor in the whole transient period will be smaller than the
corresponding homogeneous case[ The results obtained in this investigation provide much infor!
mation that is very important for the study on dynamic fracture[ The powerful technique used in
this paper can be provided for further investigation in more complicated dynamic fracture problems
especially on the crack propagation event[ Moreover\ it is easy to extend the method proposed
here to solve more di.cult problems which involve interaction of a _nite crack with boundaries[
A further study related to dynamic fracture based on this method will be given in a follow!up
report[
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Appendix

The complete transient solutions for incident wave\ re~ected wave\ refracted wave and di}racted
wave expressed in time domain for shear stress syz are shown as follows
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where
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